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The t-test is the most basic inferential statistic.  It answers one of the following questions:  1. do 
we have sufficient reason to conclude that the mean of this population (μ) [from where this sample 
was taken] is not equal to some value V? or 2. do we have sufficient reason to conclude that the 
difference between the means of these two populations (i.e., μ1–μ2) is not equal to V?  Note what 
might appear to be an inherent bias in each of these questions.  We have to have “sufficient 
reason” to conclude that the true mean or true difference between means is not equal to some 
pre-specified value; the “default” conclusion is that it is. 
 
In technical terms, the idea that μ = V or that μ1–μ2 = V is called the null hypothesis.  The null 
hypothesis is usually written as follows:  H0: µ = V  or  H0: µ1 – µ2 = V  (where V can be any 
value, but is almost always zero in the latter case).  The t-test is best thought of as being part of a 
search for evidence against the null hypothesis; it’s a test of whether the evidence against the null 
hypothesis is sufficient to get rid of it.  The null hypothesis wins by default.  
 
Because a t-test concerns whether we should get rid of (or reject) the null hypothesis, that’s all we 
really need to specify before we get started.  And, yet, some people also like to write down what is 
usually called the alternative hypothesis (H1), which is just the complement to the null -- e.g., if 
H0: μ = V , then H1: μ ≠ V.  I try to avoid this because it can give the impression that H0 and H1 are 
on equal footing when they definitely are not.  Remember: the null hypothesis wins by default.  
If you can’t produce evidence against it, you must retain it.  Also, under the “bass-ackwards” 
approach of hypothesis testing, the way that the statistical test is actually conducted is by 
calculating the probability of the data under the assumption that the null hypothesis is true; the 
alternative hypothesis is not used for any of this.  Finally, specifying an alternative hypothesis 
opens the door to having multiple alternatives, which is how you end up in the world of unjustified 
one-tailed tests (and you don’t want to go there). 
 
Types of t-Test 
 
Depending on how deeply you dig, you could easily develop a strong defense for the idea that there 
is only one type of t-test ... or two types ... or three types ... or four types.  Arguing about this 
would not be useful.  My reason for bringing this up at all is to prepare you for some issues that 
you’ll need to think about, as these go a bit deeper than just clicking an option in SPSS. 
 
On the surface (as well as in the Analyze ... Compare Means sub-menu in SPSS), there are three 
kinds of t-test: the one-sample t-test, the independent-samples t-test, and the paired-samples t-test.  
The one-sample (or univariate) t-test is for when you use a single set of values to test H0: μ = V.  
For example, you want to know if people (in general) can perform a task without simply guessing.  
If it’s a two-choice task, you test H0: π = .50. 
 
Both the independent-samples and paired-samples t-test are for testing H0: µ1 – µ2 = V, where V is 
almost always zero (so that’s all I’ll discuss).  Because of this, many people prefer to write the 
null hypothesis of a zero difference as H0: µ1 = µ2, instead.  I half agree.  My preference is to let 
the way that you write the null hypothesis act as a reminder of what kind of data you have.  If the 
values of X1 and X2 came from two different groups of subjects -- as they would if this was an 



experiment using a between-subjects design (or a pseudo-experiment involving, for example, 
males and females) -- then I agree that we should use H0: µ1 = µ2, because separating the two μs 
with the equal sign will act as a reminder that the two sets of values came from different sources.  
But if the values of X1 and X2 all came from the same subjects -- as they would if this was an 
experiment using a within-subjects design -- then I prefer to use H0: µ1 – µ2 = 0 with both μs on the 
same side.  And as you’ll see very soon, I have an even better reason for preferring H0: µ1 – µ2 = 0 
for within-subject designs. 
 
The Univariate t-test 
 
The one-sample or univariate t-test starts with four numbers -- an assumed value for population 
mean (according to the null hypothesis, µ), the sample mean (), an estimate of the spread of the 
sampling distribution for the mean (s or se) and a measure of quality (df) -- plus the Assumption 
of Normality.  From this, you (or SPSS) can calculate the t-statistic and then look up the p-value 
for this particular t-statistic for the df that you have.  If the p-value is less than .05, you reject the 
null hypothesis. 
 
The population mean according to the null hypothesis does not require any calculation.  It is 
usually set by theory.  (In the example above involving performance that is different from chance, 
the null-hypo value was .50.) 
 
 is the sample mean.  End of story. 
 
s or se is calculated from N and the version of standard deviation, s, that uses N–1 in the 
denominator (so the value provided by Analyze … Descriptives … Explore is correct).  Here are all 
the related formulae in one place: 
 
 First, one calculates the best estimate of population standard deviation: 
 
 s2  =  Σ ( X i -  )2 / ( N – 1 ) 
 
 s  =  √ s2 
 
 Second, one converts this into a standard error (via the “square-root of N” rule): 
 
 s  =  s / √ N 
 

Note the important implication of this second step (which wasn’t mentioned before).  That one 
divides by the square-root of N to convert an estimated standard deviation into a standard error 
tells you that larger samples have less error.  That’s the core of the “square-root of N” rule.  
This is one of the two places that increasing N helps to give a t-test more power.  The other 
place is in the degrees of freedom (df) associated with this standard error, which is N – 1 (as 
will be repeated in a moment).  Because the shape of the t distribution becomes more compact 
(i.e., more like a normal) as df increases, the larger the N, the more power one has from this, as 
well.  Finally, please don’t say (or think) that increasing N helps a t-test by doing something to 
, because it doesn’t;  is an unbiased estimate of μ for all sample sizes. 



Now you can calculate the t-statistic: 
 
 t  =  (  – μH0 ) / s 
 
where μH0 is short-hand for the value of μ according to the null hypothesis. 
 
Combined with the value of df -- which is N–1 for a univariate t-test (because the error term was 
based on N pieces of data, minus one for the mean that was needed calculate s) -- you can then use 
a table or a web-based gizmo to “look up” the probability of getting a value of t that is at least this 
large.  Note: if the t was negative, drop the sign; this is a two-sided test -- both positive and 
negative deviations from the μH0 count as evidence against the null. 
 
  Note that most journals now require that you report p-values to three or more decimal places, 
while other journals don’t allow more than two decimal places when N is small.. Other journals 
only ask that you say “significant” or not (i.e., below .05 or not).  Be ready for all of these by 
writing down p to at least three places. 
 
Assumptions of the univariate t-test 
 
There is only one assumption of the univariate t-test: the data are normal.  This can and should be 
tested -- prior to the running the t-test, please! – using, e.g., the Shapiro-Wilk test.  (Reminder: 
you can get this by clicking an option in the Plots sub-menu of the Analyze... Descriptive Stats... 
Explore command.) 
 
How-to: Univariate t-test using SPSS 
 
Ask for Analyze... Compare Means... One-Sample T Test...  then highlight and “push” the data 
variable that contains the DV over to the Test Variable window.  The default comparison value is 
zero (i.e., SPSS defaults to testing H0: μ = 0), but you can change this by changing the entry inside 
Test Value near the bottom of the sub-menu.  Click OK to finish. 
 
(I know that what comes might seem out of order, but there’s a reason for this….) 
 
The Paired-samples t-Test 
 
The paired-samples t-test is actually the exact same thing as a univariate t-test, although many stats 
packages, including SPSS, have a separate command for this test.  This, in my opinion, is not a 
good thing.  I’ll try to show why. 
 
But before getting into all this, it is important to explain the name.  The reason that we call it the 
“paired-samples t-test” and not the “within-subjects t-test” is that the values being paired are not 
always from the same subject.  For example, if every subject in the “experimental group” is paired 
with a specific subject in the “control group” in terms of psychologically-meaningful subject 
variables (e.g., IQ, age, sex, etc.), then one can use the paired-samples t-test (instead of an 
independent-samples t-test) and gain some advantage in statistical power.  Note, however, a 
danger here: if the cross-group matching procedure is insufficient, such that members of each pair 



are importantly different, then the use of a paired-samples t-test can actually hurt the analysis.  
This could well explain why matched-group designs are rather rare these days.  But done right, 
they’re much more powerful than between-subject, independent-sample tests. 
 
The typical null hypothesis in a paired-samples t-test is that the two population means are the 
same.  (Note that the word “population” isn’t only used to refer to people; in an experiment, the 
set of all values for each of the conditions is also a population, so you can get two populations from 
one set of people.)  As mentioned earlier, a typical way to write the null hypothesis for any t-test 
comparing two conditions is H0: µ1 = µ2.  However, I would prefer that, when the data are paired, 
you wrote this as H0: µ1 – µ2 = 0.  Not only does this remind you that the data are paired, but now 
you can make one little change and the relationship between paired t-tests and univariate t-test 
should become clear: 
 

H0: µ1 – µ2 = 0  →  H0: µD = 0, where µD = µ1 – µ2 
 
which is to say that, if the null hypothesis is that the difference between the means is zero, then the 
null hypothesis also says that the mean difference is zero.  Note that this is only possible when the 
values are paired, such that you can get a set of difference scores from your data, as well. 
 
The reasons that I prefer to think of paired t-tests as actually being tests of the mean difference 
against zero are these: 1. that’s how it’s actually done and 2. if you do it this way, you’ll actually be 
able to test the Assumption of Normality (correctly). 
 
Thus, I urge you to avoid using SPSS’s Analyze... Compare Means... Paired-Samples T Test.  
Instead, use Transform … Compute to get the within-subject or within-pair differences and then use 
Analyze... Compare Means... One-Sample T Test to test these differences against zero.  Oh, and 
don’t forget to test the differences for deviations from normality before running the t-test. 
 
That’s nice, but why did you go off about how it’s “not a good thing” that SPSS saves you from 
having to use Transform … Compute to get the paired differences?  Isn’t that a good thing?  Do 
you like wasting time? 
 
The reason that I say it’s not good that SPSS has an option for Analyze... Compare Means... 
Paired-Samples T Test is that you won’t have the correct values for the Shapiro-Wilk test.  First, 
keep in mind that both the paired-samples t-test and univariate t-test actually operate on a single set 
of numbers (viz., the set of differences or the single set of values, respectively).  All that SPSS’s 
paired-samples option does is save you from having to run Transform … Compute.  But now note 
this: because the paired-samples test uses the difference scores, it’s the difference scores that need 
to be normal.  The two columns of original data that you’ll have in a paired-samples spreadsheet 
can be any shape that their little hearts desire; those two shapes are totally irrelevant.  Running 
S-W on these two columns is, therefore, inappropraite.  Again, what needs to be normal are the 
difference scores because these are what enter the analysis.  So you need to run Transform … 
Compute to get them, so you can test the assumption before running the analysis.  So SPSS isn’t 
saving you any time by doing this for you when you ask for a paired-samples t-test.  Even worse, 
it could be seen as encouraging you to either run S-W on the wrong thing(s) or not run a test of 
normality at all. 


